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Extending the Bethe Ansatz:
The Quantum Three-Particle Ring
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The quantum problem of three impenetrable particles of arbitrary mass confined
to a ring is solved by the Bethe ansatz. The solution of this problem is
intimately related to the solution a Helmholtz equation in the interior of an
arbitrary acute triangle, a problem thought insoluble by Bethe ansatz methods.

KEY WORDS: Bethe ansatz; quantum chaos; quantum billiard; three-par-
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1. INTRODUCTION

This work is an outgrowth of an attempt to calculate the spectrum of the
Laplace operator in the interior of an arbitrary triangle with Dirichlet
boundary conditons on the sides. This is a problem of long standing(1)

in which the Bethe ansatz was thought to fail, except for very special
situations.(2)

After much frustration and effort we were led to examine a related
problem, where, to our surprise, the Bethe ansatz succeeds. This problem
(three impenetrable coordinates on a ring) is outlined below with the aim
of describing it in the revolutionary language of Baxterism (i.e., star-
triangle relations and commuting transfer matrices), as explained in the
``Red Book of Quotations.''(3) The relation between the two problems falls
just short of being a one-to-one mapping, and is discussed in the last
section.
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2. THREE COORDINATES ON A RING

2.1. Time Independent Schro� dinger Equation

The coordinates x1 , x2 , x3 label the particles of mass M1 , M2 , M3 .
The time independent partial differential equation to be solved is
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\ 1
m1

�2

�x2
1

+
1

m2

�2

�x2
2

+
1

m3

�2

�x2
3+ 9=&k29 (2)

where k2=2ME��2 and m1+m2+m3=1.
We therefore seek the eigenvalues of an anisotropic Laplace operator

in three dimensions. As a constraint of impenetrability we impose Dirichlet
boundary conditions

9(x1 , x, x)=9(x, x2 , x)=9(x, x, x3)=0

The choice of Dirichlet boundary conditions is arbitrary. Any homoge-
neous boundary condition leads to zero flux through the boundary, and is
thus impenetrable.

Geometrically the state function vanishes on planes in the 3-dimen-
sional space where any pair of coordinates are equal, irrespective of the
third coordinate. These planes intersect a center of mass plane where

m1 x1+m2x2+m3x3=constant

In addition the coordinates are constrained by a ring condition

9(x1+nL, x2+nL, x3+nL)=�(x,1 , x2 , x3)

i.e., if all three coordinates are translated around the ring the state function
returns to its value.

2.2. Bethe Ansatz

We assume a form for the solution, a finite sum of plane waves, and
show that this assumption is internally consistent. An individual plane
wave is given by the amplitude

,=e@(k1x1+k2x2+k3x3)=ei(k } r)
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which is clearly a solution to the partial differential equation with eigen-
value
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The boundary conditions are not satisfied by a single plane wave, but the
idea of the ansatz is that a properly chosen linear combination of plane
waves will satisfy the boundary conditions. To that end consider a two-
coordinate encounter, e.g., x1=x2=x. The linear combination of plane
waves

�0=e@(k1 x+k2x+k3x3)&e@(k$1x+k$2x+k3x3) (4)

vanishes on this plane if

k1+k2=k$1+k$2

and has the same eigenvalue if
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that is, if two-particle momentum and energy are conserved in the encounter.
k$1 , k$2 , k$3 are linearly related to k1 , k2 , k3 in an encounter of coordinates
x1 and x2 . A matrix representation of this linear relation is
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k$=Ak

In encounters between other pairs of coordinates a similar set of linear
relations arise. In an encounter x2=x3 ,

k$=Bk

973Extending the Bethe Ansatz



an encounter x1=x3 ,

k$=Ck

where
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It is convenient to think of the primed amplitude as generated from
the unprimed amplitude by an operator. For example, in the encounter
between x1 and x2

,$=A,=e@(Ak) } r

Of course,

AB,=e@(ABk) } r

The linear combination (4) is represented by

�0=(I&A) ,

and

A�0=&�0

This linear combination of plane waves vanishes when x1=x2 . It does not
vanish when any other pair of coordinates are equal. The ansatz is consis-
tent if a linear combination of plane waves, Q, can be found such that

AQ=BQ=CQ=&Q (5)
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2.3. Properties of the Matrices

The properties of the operators A, B, C are easily deduced from the
corresponding properties of the matrices A, B, C. It is easily shown by
direct multiplication that

A2=B2=C2=I (6)

Unfortunately, no simple, accessible method is known to produce the
fundamental property of the matrices which makes the factorization
possible. If the reader has either great algebraic fortitude, or access to an
algebraic computation program, it is easy to verify that

(ABC )2=I (7)

Given the above identity (the analog of a star-triangle relation) it is easy
to show that any product of any two matrices A, B, C, commutes with any
other product of two (the analog of commuting transfer matrices).

Due to this commutation it is natural to choose a basis where
products of two matrices are diagonal. To that end let

X2=AB, X3=BC, X1=CA

and

(Xi , Xj )=0

Again, we offer no accessible proof, but the eigenvalues of the Xi are 1,
e\i%i where

tan
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It is easily verified that
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and therefore that the three angles %1 �2, %2 �2, %3 �2 are the angles of an
acute triangle. It is algebraically and conceptually simpler to parameterize
in terms of these angles. The masses are expressed as functions of these
angles by

mi=
tan(%i �2)

tan(%1�2)+tan(%2 �2)+tan(%3 �2)
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The angles of any triangle are arbitrarily close to rational multiples
of ?. Let the denominator of the rational multiple be a prime, P. The
numerators N1 , N2 , N3 , of the rational multiple are a three-partition of P.
That is

N1+N2+N3=P

Under this assumption

%i

2
=

?Ni

P

and

XP
1 =X P

2 =X P
3 =1

Under these conditions the sum

S= :
P

s=1

(Xi )
s

is independent of i and satisfies

Xi S=S

or

ABS=BCS=CAS=S

from which it follows that

AS=BS=CS

The function which satisfies (5) may be variously written

Q=S&AS=S&BS=S&CS

Thus, the wavefunction is very complicated involving P terms which
are powers of matrices. On the other hand the eigenvalue is quite simple,
given by (3).
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3. RING CONDITION

If all coordinates are uniformly translated around the ring the state
function must return to its original value. Thus, for each plane wave
amplitude

e@(k1+k2+k3) L=1

and thus

k1+k2+k3=
2n?
L

The additional condition in the relative coordinates is somewhat more
complicated. As mentioned before the state function vanishes when any
pair of coordinates are equal. This defines three planes in the coordinate
space. These planes intersect in a line where x1=x2=x3 . On a ring this
line is repeated periodically in the difference coordinates. These lines inter-
sect the plane of fixed center of mass position in points. Figure 1 may be
helpful in understanding the following discussion of the location of these
points.

Suppose the coordinates are almost equal

x1rx2rx3r0

Fig. 1. Ring vertices for unequal masses.
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and in clockwise order. Fix the spacing of x1 and x2 and move them
together counterclockwise while moving x3 clockwise keeping the center of
mass position fixed. The three coordinates become almost equal at a
second position where

(m1+m2) 31=m3(L&31)

that is, at a position

31=m3L (8)

with coordinates

x1=x2=m3L, x3= &L(1&m3)

Similarly, if the spacing of x2 and x3 is fixed and they are jointly moved
clockwise as x1 is moved counterclockwise the three coordinates again
become almost equal at

33=&m1 L (9)

with coordinates

x1=L(1&m1), x2=x3=&m1 L

Each plane wave in the linear combination must take on the same
value at each of these vertices

e@(k1+k2) 31=e@k3 (L&31)

which implies

e@(k1+k2+k3) m3 L=e@k3L

Similar reasoning for the other vertices yield

e@(k1L�m1)=e@(k2 L�m2)=e@(k3 L�m3)=e2@?2 (10)

and therefore that

ki L
mi

=2?(ni+2)
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Periodicity under uniform translation requires

: ki L=2? \: (m i ni )+2+=2m?

thus,
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Choosing m=0, i.e., specializing to zero total momentum, implies
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4. ISOTROPIC SCHRO� DINGER EQUATION

If the coordinates of the Schro� dinger equation, (2), are rescaled

yi= g - mi xi

where g is a symmetric function of the mi , the operator becomes a Laplace
operator in three dimensions
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The eigenvalue is rescaled by g2, but the dependence of the eigenvalue on
the quantum numbers n1 , n2 , n3 is unaffected by this transformation.

In the spherically symmetric y-space the distances between the vertices
of the ring and the angles between the vectors which connect these vertices
can be computed. The figure formed is a triangle with interior angles 3i �2
and sides opposite those angles gL - mi (1&mi ). The eigenvalues may
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therefore be interpreted as the eigenvalue spectrum of a scalar Helmholtz
equation in the interior of a triangle with Dirichlet boundary conditions on
the sides. As of this writing, however, it is only possible to assert that the
dependence of the spectrum on the quantum numbers n1 , n2 , n3 is exact.
The connection of the total mass of the particle system and the circum-
ference of the confining ring to some linear dimension of this triangle
remains a mystery.
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